Respuesta :
Answer:
After use the formula we got the following result for the 90% confidence interval (0.13 <p<0.34)
And the conclusion for this case would be:
e. With 90% confidence, the proportion of all students who take notes is between 0.13 and 0.34.
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval". Â
The margin of error is the range of values below and above the sample statistic in a confidence interval. Â
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean". Â
Description in words of the parameter p
[tex]p[/tex] represent the real population proportion of students who take notes
[tex]\hat p[/tex] represent the estimated proportion of students who take notes
n is the sample size required Â
[tex]z_{\alpha/2}[/tex] represent the critical value for the margin of error Â
The population proportion have the following distribution Â
[tex]p \sim N(p,\sqrt{\frac{p(1-p)}{n}})[/tex]
Numerical estimate for p
In order to estimate a proportion we use this formula:
[tex]\hat p =\frac{X}{n}[/tex] where X represent the number of people with a characteristic and n the total sample size selected.
Confidence interval
The confidence interval for a proportion is given by this formula Â
[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex] Â
For the 90% confidence interval the value of [tex]\alpha=1-0.90=0.1[/tex] and [tex]\alpha/2=0.05[/tex], with that value we can find the quantile required for the interval in the normal standard distribution. Â
[tex]z_{\alpha/2}=1.64[/tex] Â
After use the formula we got the following result for the 90% confidence interval (0.13 <p<0.34)
And the conclusion for this case would be:
e. With 90% confidence, the proportion of all students who take notes is between 0.13 and 0.34.