Answer:
So the values are  [tex]p= \frac{1}{2}[/tex] , [tex]q= \frac{1}{2}[/tex]
Explanation:
From the question we are told that
     The equation is  [tex]v = k [g^p][h^q][/tex]
Now dimension of  v (speed ) is
     [tex]v = m/s = LT^{-1}[/tex]
Now dimension of  g (acceleration  ) is
    [tex]g= m/s^2 = LT^{-2}[/tex]
Now dimension of  h  (vertical distance  ) is    Â
    [tex]h= m = L[/tex]
So Â
     [tex]LT^{-1} = [ [LT^{-2}]^p][[ L]^q][/tex]
    [tex]LT^{-1} = [ [T^{-2p}][[ L]^{p +q}][/tex]
Equating powers
    [tex]1 =p+q[/tex]
    [tex]-1 = -2p[/tex]
=> Â Â Â [tex]p= \frac{1}{2}[/tex]
and
    [tex]q= 1 -\frac{1}{2} = \frac{1}{2}[/tex]