Answer:
The  value in Newton is [tex]W =  631.92 \  N[/tex]
The  value in pounds is   [tex]W  = 142 \ lb[/tex]
Explanation:
From the question we are told that
 The  mass of the spacecraft is  [tex]m =  70 \  kg[/tex]
  The distance above  the earth is  [tex]d =  275 \  km  =  275000 \  m[/tex]
Generally the gravitational force with respect to the earth is mathematically represented as
    [tex]W =  \frac{G * m *  m_e}{ (d + r_e)^2}[/tex]
Here [tex]m_e[/tex] is the mass of earth with value [tex]m_e = Â 5.978 *10^{24} \ Â kg[/tex]
    [tex]r_e[/tex] is the radius of the earth with value  [tex]r_e  =  6371  \ km  =  6371000 \ m[/tex]
  G is the gravitational constant with value [tex]G  =  6.67 *10^{-11}  \  m^3/ kg\cdot s^2[/tex]
So
   [tex]W =  \frac{ 6.67 *10^{-11} *  70 *  5.978 *10^{24}}{ (275000 + 6371000)^2}[/tex]
   [tex]W =  631.92 \  N[/tex]
Converting to  pounds
  [tex]W =  \frac{631.92  }{4.45}[/tex]
    [tex]W  = 142 \ lb[/tex]
  Â