Answer:
From
m∠1 = m∠4 Â
m∠1 + m∠2 = m∠3 + m∠4
m∠2 = m∠3 [tex]{}[/tex]                         Identity property
∠2 ≅ ∠3 [tex]{}[/tex]                    [tex]{}[/tex]        Equal angles are congruent
Step-by-step explanation:
Given [tex]{}[/tex] Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Reason
∠1 and ∠2 are supplementary   [tex]{}[/tex]       Given
Therefore;
m∠1 + m∠2 = 180°                [tex]{}[/tex]    Supplementary ∠s sum up to 180°
∠3 and ∠4 are supplementary   [tex]{}[/tex]       Given
Therefore;
m∠3 + m∠4 = 180°                [tex]{}[/tex]    Supplementary ∠s sum up to 180°
From which we have;
m∠1 + m∠2 = 180° = m∠3 + m∠4    [tex]{}[/tex]  [tex]{}[/tex]   Transitive property
m∠1 + m∠2 = m∠3 + m∠4
∠1 ≅ ∠4              [tex]{}[/tex]               Given
m∠1 = m∠4                   [tex]{}[/tex]        Congruent ∠s have equal measure
Therefore;
m∠1 + m∠2 = m∠3 + m∠1        [tex]{}[/tex]     [tex]{}[/tex]  Transitive property
Therefore;
m∠1 + m∠2 - m∠1= m∠3 + m∠1 - m∠1    [tex]{}[/tex]Subtraction property
m∠1 - m∠1 + m∠2 = m∠3 + m∠1 - m∠1  [tex]{}[/tex]  Â
0 + m∠2 = m∠3 + 0               [tex]{}[/tex]    Inverse property
Therefore;
m∠2 = m∠3 [tex]{}[/tex]                         Identity property
∠2 ≅ ∠3 [tex]{}[/tex]                    [tex]{}[/tex]        Equal angles are congruent.