QUICK ILL GIVE BRAINLIESTA student simplified (cube root of 64 โˆ’ 16 รท 2)(2 โˆ’ 4)2 using the following steps:(cube root of 64 โˆ’ 16 รท 2)(2 โˆ’ 4)2Step 1: (4 โˆ’ 16 รท 2)(2 โˆ’ 4)2 Simplify the cube root.Step 2: (โˆ’12 รท 2)(2 โˆ’ 4)2 Subtract within first parentheses.Step 3: โˆ’6(2 โˆ’ 4)2 Divide within the first parentheses.Step 4: โˆ’6(2 โˆ’ 16) Simplify the exponent.Step 5: โˆ’6(โˆ’14) Subtract within the parentheses.Step 6: 84 Multiply.Part A: The student made a mistake in Step 2. Describe the mistake and explain how to correct it.Part B: The student made a mistake in Step 4. Describe the mistake and explain how to correct it.Part C: Show every step of your work to simplify (cube root of 64 โˆ’ 16 รท 2)(2 โˆ’ 4)2.

QUICK ILL GIVE BRAINLIESTA student simplified cube root of 64 16 22 42 using the following stepscube root of 64 16 22 42Step 1 4 16 22 42 Simplify the cube root class=

Respuesta :

Explanation:

The expression given in the question is

[tex](\sqrt[3]{64}-16\div2)(2-4)^2[/tex]

Part C:

Step 1:

Solve the cube root

[tex]\begin{gathered} (\sqrt[3]{64}-16\div2)(2-4)^2 \\ (4-16\div2)(2-4)^2 \end{gathered}[/tex]

Step 2:

Divide within first parenthesis

[tex]\begin{gathered} (4-16\div2)(2-4)^2 \\ (4-8)(2-4)^2 \end{gathered}[/tex]

Step 3:

substract within first parenthesis

[tex]\begin{gathered} (4-8)(2-4)^{2} \\ (-4)(-2)^2 \end{gathered}[/tex]

Step 4:

Substract within the parenthesis

[tex]\begin{gathered} (-4)(2-4)^2 \\ -4_(2-4)^2 \\ -4(-2)^2 \end{gathered}[/tex]

Step 5:

Simplify the exponent

[tex]\begin{gathered} -4(-2)^2 \\ =-4(4) \end{gathered}[/tex]

Step 6:

Multiply

[tex]\begin{gathered} -4(4) \\ =-16 \end{gathered}[/tex]

Part A:

The mistake made in step 2 was that the student substracted first instead of dividing with the first parenthesis first

[tex]\begin{gathered} (4-16\div2)(2-4)^2 \\ (-12\div2)(2-4)^2(WRONG) \\ \\ (4-8)(2-4)^2(CORRECT) \end{gathered}[/tex]

Part B:

The mistake made in step 4 was that the student simplified the exponent first instead of substracting with the second parenthesis and then simplifying the exponent

[tex]\begin{gathered} (-4)(2-4)^{2} \\ -6(2-16)(WRONG) \\ \\ -4(-2)^2 \\ -4(4)(CORRECT) \end{gathered}[/tex]